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NONLOCAL EFFECTS ON THE CONVECTIVE PROPERTIES OF THE

ELECTROSTATIC CURRENT DRIVEN ION CYCLOTRON INSTABILITY

I. INTRODUCTION

The current driven ion cyclotron instability' (CDICI) has been of

considerable interest to both space and laboratory plasma physicists for

more than two decades. Recently, we have demonstrated the importance of %

nonlocal effects due to magnetic shear2 ,3 (produced by the field aligned

current) and the finite extent of the current channel4'5. Our past work

dealing with these nonlocal aspects of the electrostatic CDICI was

essentially based on a normal mode approach. The local treatment of the

CDICI, 1 ,6,7 which assumes an infinite extent of the width of the current

channel, predicts a finite group velocity of the CDICI in both the parallel

and perpendicular directions relative to the external magnetic field. For

a temporally growing mode, the presence or absence of a group velocity in a

finite sized region of space (as opposed to a point) makes an instability

convective or absolute; 8  these are two vastly different physical

scenarios. This fact has been elucidated by Ashour-Abdulla and Kennel, 7 in 4

general, and more specifically for the CDICI by Ashour-Abdulla and

Thorne.9  In our earlier work2-4 we noted a significant difference between

the local and the nonlocal results as far as growth rates of normal modes

are concerned. For instabilities like the CDICI which are convective, a

normal mode analysis without regard to the convective growth cannot fully

determine the stability of a bounded system, and hence is somewhat limited

in its application. Thus, the main objective of this paper is to report

the nonlocal effects due to magnetic shear and the finite current channel

width on the convective aspects of the electrostatic CDICI.

Manuscript approved April 23, 1984.
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II. THEORY

In our treatment we will follow the analytical approach as given in

Bakshi et al. 4  We introduce a finite current channel width in the x

direction. We take the electron distribution function to be Maxwellian

with a drift velocity parallel to the magnetic field which is x dependent:

Vd(X) - Vd g(xg/LcJ (I)

2
where g exp-E and xg = x + v/ A e . Assuming that vy/$e -0(P e)

<< Lc, where Lc is the characteristic length scale associated with the

current channel, we approximate (1) by

.5 p

Vd(x) V0g(x/LcJ. (2)

Using (2) and following the methods illustrated in Ref. 4 we arrive at the

nonlocal, differential equation for the CDICI:

j('i 2 3 +Qu, VdI*)- 0, (3)

.where Q is defined by,

2 Q1Q - - (4)
i A
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a" ' .,S . . :

Q = I + ,k Xi)2 + T + E rnbCZ((- np)ci.
n

v.( )Vd( )

+ I - (C d ., d 5)
4 v e eVe  e+

2

A - C z r (b) Z((l - np)Ci), (6)
n

2 2
where b k kP'/2, r; - arn/3b, T - Ti/T, P - ll C w/k I V,

Sx/Lc Ce " mw/IkIve, kI(x) -kz ky(Lc/LsJ g(g)dE, u - k (x)/ky

and L is the characteristic length associated with the shear in the

magnetic field.

The dispersion equation is given 
by: 4

, J 0, (7a)

Q(W, l - (21 + IJP/LJ[- Q1(w, j 1 (T)

ii

where Q' and Q" are the first and second derivatives of Q with respect

to 9 evaluated at E1' which is defined by 7a. We solve equations 7a and 7b

numerically for the complex eigenfrequencies w, given the perpendicular

wave vector k, the parallel wave vector at the origin k z, and other

parameters characterizing the system. For evaluating the group

velocities v gz and vgy we take the derivatives of the real part of the

eigenfrequency wr, with respect to kz and ky, respectively, i.e., Vgz

Wr /Akz and V - Aw r /Ak . In the x direction the wave energy is confined
y. r z gy r y

5, to the vicinity of t1 M x /Lc"
I* a

Figure la shows the parallel group velocity normalized by the ion

thermal velocity vi versus the ratio of the current channel size Lc and the

9/ %
. .,. . .. ... ,- .-.-... - --.','-.._" 'v.'-'- - '-, '3,'''-.' 'wb: / ..'','''.-.-,.' %3 -
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magnetic shear length La for three different values of L .  Here b =

0.6, T - 0.5, u - 1837 and V0 /V - 0.28. In order to evaluate the value
d e

of 1kyXi) 2 we have used the parameters of Ashour-Abdulla and Thorne 9 , i.e.,

no % 10 -, Bo B 0.06 G, and Ti -2 eV. For the first

harmonic (k )2 0.01 and that term in equation (5) contributes

negligibly. The most interesting result of figure la is that in the limit

Lc + m, VgZ  0. One finds that as Lc is increased beyond

Ls, Vgz approaches zero as (Ls/L c)2 . Further, when Lc is made smaller than

10- 2 L 8the value of V attains its local value (i.e., the value predicted

by local theories 1,6) and stabilizes at that value. However, when Lc is

further reduced such that Lc <' V once again decreases.

Figure lb is a plot of V against Lc/L s for the parameters of Figure

la. Here too we find a reduction in V in the shear dominated regime
gy 4

(i.e., Lc > L.) much in the same fashion as the temporal growth rate.4

However, the difference between the local and the nonlocal values of V is
gy

not as striking as that of V gz . As noted by Ashour-Abdulla and Thorne,9

V for the CDICI near the dominant normal mode (which occurs forgy

b 0(1)) is extremely small; and combined with our results that V + 0gz

in the nonlocal regime the CDICI becomes, effectively, an absolute

instability. For Lc < pi, Vgy becomes negative. Figures 2a and 2b aregy]

plots similar to la and lb for the second harmonic. Here we

use T - 1, Vd/V - 0.55 and b - 2.4. The value of b for all the .
calculations corresponds to the maximum temporal growth rate. We see

*. trends similar to figure la and lb for the higher harmonic also.

In Figure 3 we plot the convective growth rate k Y/V normalized
iz gz

4by the mean ion Larmor radius versus Lc/Ls . We see two distinct regions

. 4
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joined smoothly. For very small L /L s (i.e., L /L < 10- 3 ), kp < 0

which indicates spatially damped waves. When L c/L is increased the curves

attain a plateau which corresponds to the local theory. Here we find a .

finite kizPi and, hence, a finite region in which the wave amplitude can be

amplified by one e-fold. For Lc > Ls , kizPi grows without bound, implying

that the wave amplitude can e-fold in an insignificantly small region

(Recall that the system is assumed to be infinite and uniform in the y

direction, hence convection in this direction is ignorable). Thus the

character of CDICI is changed from convective to absolute.

We have so far considered only one species of ions characterized by a

temperature Ti. In order to make the system more realistic, especially for

space applications, we added a second ion species characterized by a hotter

temperature but still with a Maxwellian distribution. The general features

of the group velocity behavior is still the same as in a single ion

species. A more detailed parametric study of the nonlocal convective

aspects of CDICI with a loss cone distribution for the hotter ion species,
along with the magnetospheric application will be presented elsewhere.

III. DISCUSSION

Thus, in contrast to local theory, nonlocal theory gives zero group

velocity for the CDICI along the average external magnetic field direction

in the limit L > L Clearly the ratio L /L is the important parameter

and its magnitude must be well established before making definitive

conclusions regarding the electrostatic CDICI. Depending on the value of

L /L., the CDICI can be classified into three main regimes:

,I

cOrs
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(i) L > 0.1 L This regime is purely nonlocal with a temporalc- s

growth rate much reduced from its local value. Also the

instability is absolute or only very weakly convective in the z

direction which is the direction of the average external

magnetic field and the current flow. There is no energy flow

in the x direction, and energy flow in the y direction is

ignorable if 0 .

(ii) L < 0.01 L In this regime nonlocal theory reproduces the
c s

results of local theory, and the instability becomes convective

in the z direction with a convective, as well as a temporal

growth rate, equal to the ones given by the local theory.

a, There is a smooth transition between regimes (i) and (ii) as is

evident in all the figures.

(iii) L ~ Pi << L The finite channel width becomes important.

There is once again a reduction in the temporal growth rate

(filamental quenching ) but the instability remains convective,

i.e., Vgz remains non-zero. However, when Lc is further

reduced so that Lc < both V and V become reduced andgz gy

5eventually become negative.

ePhysically the reason for vanishing parallel group velocity can be

described as follows. Figure 4 shows the angle space where the imaginary

part of the local dispersion relation DI  0 0, and the growth rate is

* positive for the CDICI. The extent of this unstable angular space Au for

the CDICI in our parameter range is about 0.1. In the nonlocal theory a

-*1 wave packet is formed whose size is governed by the smaller of the two

scale lengths Lc and 0.1 L*s  When Lc < 0.1 L. the drift velocity Vd(x)

varies sufficiently fast as a function of x, or as a function of the angle

6
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u within the space Au, so as to form an effective Q, curve which has the

form of a steep well. The position of the bottom of this well is at uo

kz/ky; thus different choices of k center the well in different parts ofz-y z

the region Au and the corresponding wave packets (of size VP~ ) sample

different regions of Au which lead to different growth rates y as well as

different real frequencies wr" On the other hand, when L > Ls, the

variation of Vd(x) in the domain Au is rather weak and the effective Q,

curve is governed by the variation of u rather than that of Vd in Eq.

(3). Now, if we choose different k , an appropriate translation in xz

(i.e., moving away from the center of the slab) is sufficient to provide

almost the same invariant Q, curve as a function of u. The resulting wave

packet (of size ip-L ) forms at the same position in u space (even though
i S

we choose different k ) and has the same growth rate y and real
z

frequency w , independent of k This makes the group velocity 3w /3krz r z
vanish in the limit Lc +

IV. CONCLUSION

We have shown in this paper that the nonlocal effects due to the

magnetic shear (produced by a field aligned current) and a finite channel

current width can drastically alter the character of the electrostatic

CDICI by making the instability effectively absolute in the z direction.

The important parameter turns out to be the ratio of the two scale lengths

involved in the problem Lc and Ls. Depending on the value of L L one canc 9 c s
classify the CDICI in three regimes as described earlier, and a careful

assessment of the value of Lc /L for a given physical situation becomes

7
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essential to draw any definitive conclusion regarding the growth and

convective characteristics of the electrostatic CDICI. We would also like

to note that the nonlocal effects due to magnetic shear can be expected to

produce corresponding phenomena, including the vanishing of the parallel

group velocity, in various other current driven instabilities as well.

~1
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A plot of the group velocity against L cIL, for the first harmonic.
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ivelocity in the z direction V 9z/V against LC /L a (b) the group

velocity in the y direction V gy/V against Lc /L so
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'oA plot of imaginary part of the local dispersion relation DI(w , k)
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0.5, Pi - 3674 and four different values of the temperature ratio T: .

(a) T -0.1, (b) r 0.2, (c) T -0.33, and (d) T 1.0.
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